Source code for diffpy.srmise.baselines.polynomial

#!/usr/bin/env python
##############################################################################
#
# SrMise            by Luke Granlund
#                   (c) 2014 trustees of the Michigan State University
#                   (c) 2024 trustees of Columbia University in the City of New York
#                   All rights reserved.
#
# File coded by:    Luke Granlund
#
# See LICENSE.txt for license information.
#
##############################################################################

import logging

import numpy as np

from diffpy.srmise.baselines.base import BaselineFunction
from diffpy.srmise.srmiseerrors import SrMiseEstimationError

logger = logging.getLogger("diffpy.srmise")


[docs] class Polynomial(BaselineFunction): """Methods for evaluation and parameter estimation of a polynomial baseline.""" def __init__(self, degree, Cache=None): """Initialize a polynomial function of degree d. Parameters ---------- degree: int The degree of the polynomial. Any negative value is interpreted as the polynomial of negative infinite degree. Cache: class The class (not instance) which implements caching of BaseFunction evaluations. """ # Guarantee valid degree try: self.degree = int(str(degree)) except ValueError: emsg = "Argument degree must be an integer." raise ValueError(emsg) if self.degree < 0: self.degree = -1 # interpreted as negative infinity # Define parameterdict # e.g. {"a_0":3, "a_1":2, "a_2":1, "a_3":0} if degree is 3. parameterdict = {} for d in range(self.degree + 1): parameterdict["a_" + str(d)] = self.degree - d formats = ["internal"] default_formats = {"default_input": "internal", "default_output": "internal"} metadict = {"degree": (degree, repr)} BaselineFunction.__init__(self, parameterdict, formats, default_formats, metadict, None, Cache) # Methods required by BaselineFunction ####
[docs] def estimate_parameters(self, r, y): """Estimate parameters for polynomial baseline. Estimation is currently implemented only for degree < 2. This very rudimentary method assumes the baseline crosses the origin, and y=baseline+signal, where signal is primarily positive. Parameters ---------- r : array-like The data along r from which to estimate y : array-like The data along y from which to estimate Returns ------- array-like The Numpy array of parameters in the default internal format. Raises NotImplementedError if estimation is not implemented for this degree, or SrMiseEstimationError if parameters cannot be estimated for any other reason. """ if self.degree > 1: emsg = "Polynomial implements estimation for baselines of degree <= 1 only." raise NotImplementedError(emsg) if len(r) != len(y): emsg = "Arrays r, y must have equal length." raise ValueError(emsg) if self.degree == -1: return np.array([]) if self.degree == 0: return np.array([0.0]) if self.degree == 1: # Estimate degree=1 baseline. # Find best slope for y=slope*r using only the least 10% of all # points, assuming the non-baseline component of the data largely # lies above the baseline. # TODO: Make this more sophisticated. try: cut = np.max([len(y) / 10, 1]) cut_idx = y.argsort()[: int(cut)] import numpy.linalg as la a = np.array([r[cut_idx]]).T slope = la.lstsq(a, y[cut_idx], rcond=-1)[0][0] return np.array([slope, 0.0]) except Exception as e: emsg = "Error during estimation -- " + str(e) raise SrMiseEstimationError(emsg)
def _jacobianraw(self, pars, r, free): """Return the Jacobian of a polynomial. Parameters ---------- pars : array-like The sequence of parameters for a polynomial of degree d pars[0] = a_degree pars[1] = a_(degree-1) ... pars[d] = a_0 r : array-like The sequence or scalar over which pars is evaluated free : bool The sequence of booleans which determines which derivatives are needed. True for evaluation, False for no evaluation. Returns ------- jacobian: array-like The Jacobian of polynomial with degree d """ if len(pars) != self.npars: emsg = "Argument pars must have " + str(self.npars) + " elements." raise ValueError(emsg) if len(free) != self.npars: emsg = "Argument free must have " + str(self.npars) + " elements." raise ValueError(emsg) jacobian = [None for p in range(self.npars)] if np.sum(np.logical_not(free)) == self.npars: return jacobian # The partial derivative with respect to the nth coefficient of a # polynomial is just x^nth. for idx in range(self.npars): if free[idx]: jacobian[idx] = np.power(r, idx) return jacobian def _transform_parametersraw(self, pars, in_format, out_format): """Convert parameter values from in_format to out_format. Parameters pars : array-like The sequence of parameters in_format : str The format defined for this class out_format : str The format defined for this class Defined Formats --------------- internal: [a_degree, a_(degree-1), ..., a_0] Returns ------- array-like The transformed parameters in out_format """ temp = np.array(pars) # Convert to intermediate format "internal" if in_format == "internal": pass else: raise ValueError("Argument 'in_format' must be one of %s." % self.parformats) # Convert to specified output format from "internal" format. if out_format == "internal": pass else: raise ValueError("Argument 'out_format' must be one of %s." % self.parformats) return temp def _valueraw(self, pars, r): """Return value of polynomial for the given parameters and r values. Parameters ---------- pars : array-like The sequence of parameters for a polynomial of degree d pars[0] = a_degree pars[1] = a_(degree-1) ... pars[d] = a_0 If degree is negative infinity, pars is an empty sequence. r : array-like The sequence or scalar over which pars is evaluated Returns ------- float The value of polynomial for the given parameters and r values. """ if len(pars) != self.npars: emsg = "Argument pars must have " + str(self.npars) + " elements." raise ValueError(emsg) return np.polyval(pars, r)
[docs] def getmodule(self): return __name__
# end of class Polynomial # simple test code if __name__ == "__main__": # Test polynomial of degree 3 print("Testing degree 3 polynomial") print("---------------------------") f = Polynomial(degree=3) r = np.arange(5) pars = np.array([3, 0, 1, 2]) free = np.array([True, False, True, True]) val = f._valueraw(pars, r) jac = f._jacobianraw(pars, r, free) print("Value:\n", val) print("Jacobian: ") for j in jac: print(" %s" % j) # Test polynomial of degree -oo print("\nTesting degree -oo polynomial (== 0)") print("------------------------------------") f = Polynomial(degree=-1) r = np.arange(5) pars = np.array([]) free = np.array([]) val = f._valueraw(pars, r) jac = f._jacobianraw(pars, r, free) print("Value:\n", val) print("Jacobian: ") for j in jac: print(" %s" % j) # Test linear estimation print("\nTesting linear baseline estimation") print("------------------------------------") f = Polynomial(degree=1) pars = np.array([1, 0]) r = np.arange(0, 10, 0.1) y = -r + 10 * np.exp(-((r - 5) ** 2)) + np.random.rand(len(r)) est = f.estimate_parameters(r, y) print("Actual baseline: ", np.array([-1, 0.0])) # TODO: Make test est baseline in ways of tolerance function print("Estimated baseline: ", est)