Source code for diffpy.srmise.modelevaluators.aicc

#!/usr/bin/env python
##############################################################################
#
# SrMise            by Luke Granlund
#                   (c) 2014 trustees of the Michigan State University
#                   (c) 2024 trustees of Columbia University in the City of New York
#                   All rights reserved.
#
# File coded by:    Luke Granlund
#
# See LICENSE.txt for license information.
#
##############################################################################

import logging

import numpy as np

from diffpy.srmise.modelevaluators.base import ModelEvaluator
from diffpy.srmise.srmiseerrors import SrMiseModelEvaluatorError

logger = logging.getLogger("diffpy.srmise")


[docs] class AICc(ModelEvaluator): """Evaluate and compare models with the AICc statistic. Akaike's Information Criterion w/ 2nd order correction for small sample sizes (AICc) is a method for comparing statistical models which balances raw goodness-of-fit with model parsimony. Assuming the uncertainties are independent normal random variables the AICc has the special form implemented by this class: AICc = chi^2 + 2*k + 2*k*(k+1)/(n-k-1) where chi^2 is the chi-squared statistic, k is the number of free parameters in the model, and n is the number of data points. Lower values of the AICc imply a better model, but note that the value of the statistic has no absolute interpretation, and only differences between two models with the same observed values (and uncertainties) have meaning. For further details see: Burnham, K. P. and Anderson, D. R. "Model selection and Multimodel Inference: A Practical Information Theoretic Approach." Springer-Verlag, 2002. """ def __init__(self): """ """ ModelEvaluator.__init__(self, "AICc", False) return
[docs] def evaluate(self, fit, count_fixed=False, kshift=0): """Return quality of fit for given ModelCluster using AICc (Akaike's Information Criterion with 2nd order correction for small sample size). Parameters fit: A ModelCluster The ModelCluster to evaluate. count_fixed : bool Whether fixed parameters are considered. Default is False. kshift : int Treat the model has having this many additional parameters. Negative values also allowed. Default is 0. Returns ------- float Quality of AICc""" # Number of parameters. By default, fixed parameters are ignored. k = fit.model.npars(count_fixed=count_fixed) + kshift if k < 0: emsg = "AICc not defined for negative number of parameters." raise SrMiseModelEvaluatorError(emsg) # Number of data points included in the fit n = fit.size if n < self.minpoints(k): logger.warning("AICc.evaluate(): too few data to evaluate quality reliably.") n = self.minpoints(k) if self.chisq is None: self.chisq = self.chi_squared(fit.value(), fit.y_cluster, fit.error_cluster) self.stat = self.chisq + self.parpenalty(k, n) return self.stat
[docs] def minpoints(self, npars): """Calculates the minimum number of points required to make an estimate of a model's quality. Parameters ---------- npars : int The number of points required to make an estimate of a model's quality. Returns ------- int The minimum number of points required to make an estimate of a model's quality. """ # From the denominator of AICc, it is clear that the first positive finite contribution to # parameter cost is at n>=k+2 return npars + 2
[docs] def parpenalty(self, k, n): """Returns the cost for adding k parameters to the current model cluster. Parameters ---------- k : int The number of parameters to add. n : int The number of data points. Returns ------- float The cost for adding k parameters to the current model cluster. """ # Weight the penalty for additional parameters. # If this isn't 1 there had better be a good reason. fudgefactor = 1.0 return (2 * k + float(2 * k * (k + 1)) / (n - k - 1)) * fudgefactor
[docs] def growth_justified(self, fit, k_prime): """Is adding k_prime parameters to ModelCluster justified given the current quality of the fit. The assumption is that adding k_prime parameters will result in "effectively 0" chiSquared cost, and so adding it is justified if the cost of adding these parameters is less than the current chiSquared cost. The validity of this assumption (which depends on an unknown chiSquared value) and the impact of the errors used should be examined more thoroughly in the future. Parameters ---------- fit : ModelCluster The ModelCluster to evaluate. k_prime : int The prime number of parameters to add. Returns ------- bool Whether the current model cluster is justified or not. """ if self.chisq is None: self.chisq = self.chi_squared(fit.value(), fit.y_cluster, fit.error_cluster) k_actual = fit.model.npars(count_fixed=False) # parameters in current fit k_test = k_actual + k_prime # parameters in prospective fit n = fit.size # the number of data points included in the fit # If there are too few points to calculate AICc with the requested number of parameter # then clearly that increase in parameters is not justified. if n < self.minpoints(k_test): return False # assert n >= self.minPoints(kActual) #check that AICc is defined for the actual fit if n < self.minpoints(k_actual): logger.warning("AICc.growth_justified(): too few data to evaluate quality reliably.") n = self.minpoints(k_actual) penalty = self.parpenalty(k_test, n) - self.parpenalty(k_actual, n) return penalty < self.chisq
[docs] @staticmethod def akaikeweights(aics): """Return sequence of Akaike weights for sequence of AICs Parameters ---------- aics : array-like The squence of AIC instances Returns ------- array-like The sequence of Akaike weights """ aic_stats = np.array([aic.stat for aic in aics]) aic_min = min(aic_stats) return np.exp(-(aic_stats - aic_min) / 2.0)
[docs] @staticmethod def akaikeprobs(aics): """Return sequence of Akaike probabilities for sequence of AICs Parameters ---------- aics : array-like The squence of AIC instances Returns ------- array-like The sequence of Akaike probabilities""" aic_weights = AICc.akaikeweights(aics) return aic_weights / np.sum(aic_weights)
# end of class AICc # simple test code if __name__ == "__main__": m1 = AICc() m2 = AICc() m1.stat = 20 m2.stat = 30 print(m2 > m1)