Source code for diffpy.srmise.peakextraction

#!/usr/bin/env python
##############################################################################
#
# SrMise            by Luke Granlund
#                   (c) 2014 trustees of the Michigan State University
#                   (c) 2024 trustees of Columia University in the City of New York
#                   All rights reserved.
#
# File coded by:    Luke Granlund
#
# See LICENSE.txt for license information.
#
##############################################################################

import logging
import os.path
import re
import sys

import matplotlib.pyplot as plt
import numpy as np

from diffpy.srmise import srmiselog
from diffpy.srmise.baselines.base import Baseline
from diffpy.srmise.dataclusters import DataClusters
from diffpy.srmise.modelcluster import ModelCluster, ModelCovariance
from diffpy.srmise.peaks.base import Peak, Peaks
from diffpy.srmise.srmiseerrors import SrMiseDataFormatError, SrMiseEstimationError, SrMiseFileError

logger = logging.getLogger("diffpy.srmise")


[docs] class PeakExtraction(object): """Class for peak extraction. Parameters ---------- x : array-like The x coordinates of the data y : array-like The y coordinates of the data dx : array-like The uncertainties in the x coordinates (not used) dy : array-like The uncertainties in the y coordinates effective_dy : array-like The uncertainties in the y coordinates actually used during extraction rng : list The [xmin, xmax] Range of x coordinates over which to extract peaks pf : array-like The sequence of peak functions that can be extracted initial_peaks: Peaks object The peaks present at start of extraction baseline : Baseline object The baseline for data cres : float The resolution of clustering error_method : ErrorEvaluator class The Evaluation class used to compare models Calculated members ------------------ extracted : ModelCluster object The ModelCluster object after extraction extraction_type : Type of extraction """ def __init__(self, newvars=[]): """Initialize PeakExtraction object. Parameters newvars : array-like Sequence of strings that represent additional extraction parameters.""" self.clear() self.extractvars = dict.fromkeys( ( "effective_dy", "rng", "pf", "initial_peaks", "baseline", "cres", "error_method", ) ) for k in newvars: if k not in self.extractvars: self.extractvars[k] = None else: emsg = "Extraction variable %s conflicts with existing variable" % k raise ValueError(emsg) return
[docs] def clear(self): """Clear all members. The purpose of the method is to ensure the object is in initialized state.""" self.x = None self.y = None self.dx = None self.dy = None self.effective_dy = None self.cres = None self.pf = None self.baseline = None self.error_method = None self.initial_peaks = None self.rng = None self.clearcalc()
[docs] def clearcalc(self): """Clear all calculated members.""" self.extracted = None self.extraction_type = None
[docs] def setdata(self, x, y, dx=None, dy=None): if len(x) != len(y): emsg = "Sequences x and y must have the same length." raise ValueError(emsg) self.x = np.array(x) self.y = np.array(y) if dx is None: self.dx = np.zeros(len(x)) else: self.dx = np.array(dx) if dy is None: self.dy = np.zeros(len(x)) else: self.dy = np.array(dy) if len(self.x) != len(self.dx) or len(self.x) != len(self.dy): emsg = "Sequences dx and dy (if present) must have the same length as x" raise ValueError(emsg) # self.defaultvars() return
[docs] def setvars(self, quiet=False, **kwds): """Set one or more extraction variables. Parameters ---------- quiet : bool The log changes quietly. Default is False. cres : float The clustering resolution, must be > 0. effective_dy : array-like The uncertainties actually used during extraction pf : list The sequence of PeakFunctionBase subclass instances. baseline : Baseline instance or BaselineFunction instance The Baseline instance or BaselineFunction instance that use built-in estimation error_method : ErrorEvaluator subclass instance The ErrorEvaluator subclass instance used to compare models. Default is AIC. initial_peaks : Peaks instance These peaks are present at the start of extraction. rng : array-like The sequence specifying the least and greatest x-values over which to extract peaks. """ for k, v in kwds.items(): if k in self.extractvars: if quiet: logger.debug("Setting variable %s=%s", k, v) else: logger.info("Setting variable %s=%s", k, v) setattr(self, k, v) else: emsg = "Invalid extraction variable: %s=%s" % (k, v) raise ValueError(emsg) self.defaultvars()
[docs] def defaultvars(self, *args): """Set unset(=None) extraction variables to default values. Certain variables may be partially set for convenience, and are transformed appropriately. See 'Default values assigned' below. Parameters ---------- *args : str The variable argument list where each string corresponds to an extraction variable name. Default values assigned: - `cres` : 4 times the average spacing between elements in `x`. - `effective_dy` : If all elements in `y` are positive, it's set to the data `dy`; otherwise, it's 5% of the range (`max(y)` - `min(y)`). If `effective_dy` is a positive scalar, an array of that value with a length matching `y` is used. - `pf` : A list containing a single Gaussian overlap function with the maximum width spanning the entire `x` range (`x[-1] - x[0]`). - `baseline` : A flat baseline at `y=0`, indicating no background signal. - `error_method` : Uses the AIC (Akaike Information Criterion) for evaluating model fits. - `initial_peaks` : Assumes no initial peak guesses, implying peaks will be detected from scratch. - `rng` : The default range is set to span the entire `x` dataset, i.e., `[x[0], x[-1]]`. If a range is partially defined, e.g., `[None, 100.]`, the `None` value is replaced with the respective boundary of the `x` data. Note that the default values of very important parameters like the uncertainty and clustering resolution are crude guesses at best. """ if self.cres is None or "cres" in args: self.cres = 4 * (self.x[-1] - self.x[0]) / len(self.x) if self.effective_dy is None or "effective_dy" in args: if np.all(self.dy > 0): # That is, all points positive uncertainty. self.effective_dy = self.dy else: # A terribly crude guess self.effective_dy = 0.05 * (np.max(self.y) - np.min(self.y)) * np.ones(len(self.x)) elif np.isscalar(self.effective_dy) and self.effective_dy > 0: self.effective_dy = self.effective_dy * np.ones(len(self.x)) if self.pf is None or "pf" in args: from diffpy.srmise.peaks.gaussianoverr import GaussianOverR # TODO: Make a more useful default. self.pf = [GaussianOverR(self.x[-1] - self.x[0])] if self.rng is None or "rng" in args: self.rng = [self.x[0], self.x[-1]] else: if self.rng[0] is None: self.rng[0] = self.x[0] if self.rng[1] is None: self.rng[1] = self.x[-1] # Set baseline where the type is given, but parameters must be estimated. if hasattr(self.baseline, "estimate_parameters"): try: s = self.getrangeslice() epars = self.baseline.estimate_parameters(self.x[s], self.y[s]) self.baseline = self.baseline.actualize(epars, "internal") logger.info("Estimating baseline: %s" % self.baseline) except (NotImplementedError, SrMiseEstimationError): logger.error("Could not estimate baseline from provided BaselineFunction, trying default values.") self.baseline = None if self.baseline is None or "baseline" in args: from diffpy.srmise.baselines.polynomial import Polynomial bl = Polynomial(degree=-1) self.baseline = bl.actualize(np.array([]), "internal") if self.error_method is None or "error_method" in args: from diffpy.srmise.modelevaluators.aic import AIC self.error_method = AIC if self.initial_peaks is None or "initial_peaks" in args: self.initial_peaks = Peaks()
def __str__(self): """Return string summary of PeakExtraction.""" out = [] for k in self.extractvars: out.append("%s: %s" % (k, getattr(self, k))) if self.extracted is not None: out.append("Extraction type: %s" % self.extraction_type) out.append("--- Extracted ---") out.append(str(self.extracted)) else: out.append("No extracted peaks exist.") return "\n".join(out) + "\n"
[docs] def plot(self, **kwds): """Convenience function to plot data and extracted peaks with matplotlib. Uses initial peaks instead if no peaks have been extracted. Takes same keywords as ModelCluster.plottable() Parameters ---------- **kwds :args The keyword arguments to pass to matplotlib. """ plt.clf() if self.extracted is not None: plt.plot(*self.extracted.plottable(kwds)) else: # Make sure all required extraction variables have some value self.defaultvars() rangeslice = self.getrangeslice() x = self.x[rangeslice] y = self.y[rangeslice] dy = self.dy[rangeslice] mcluster = ModelCluster( self.initial_peaks, self.baseline, x, y, dy, None, self.error_method, self.pf, ) plt.plot(*mcluster.plottable(kwds))
[docs] def read(self, filename): """load PeakExtraction object from file Parameters ---------- filename : str The file from which to read Returns ------- self """ try: self.readstr(open(filename, "rb").read()) except SrMiseDataFormatError as err: logger.exception("") basename = os.path.basename(filename) emsg = ("Could not open '%s' due to unsupported file format " + "or corrupted data. [%s]") % ( basename, err, ) raise SrMiseFileError(emsg) return self
[docs] def readstr(self, datastring): """Initialize members from string. Parameters ---------- datastring : array-like The raw data to read """ from diffpy.srmise.basefunction import BaseFunction self.clear() # The major components are: # - Header # - BaselineFunctions # - PeakFunctions # - BaselineObject # - InitialPeaks # - SrMiseMetaData # - MetaData # - StartData # - Results # Lists holding BaseFunctions as they are instantiated safepf = [] safebf = [] # find where the results section starts res = re.search(r"^#+ Results\s*(?:#.*\s+)*", datastring, re.M) if res: results = datastring[res.end() :].strip() header = datastring[: res.start()] # find data section, and what information it contains res = re.search(r"^#+ start data\s*(?:#.*\s+)*", header, re.M) if res: start_data = header[res.end() :].strip() start_data_info = header[res.start() : res.end()] header = header[: res.start()] res = re.search(r"^(#+L.*)$", start_data_info, re.M) if res: start_data_info = start_data_info[res.start() : res.end()].strip() hasx = False hasy = False hasdx = False hasdy = False hasedy = False res = re.search(r"\bx\b", start_data_info) if res: hasx = True res = re.search(r"\by\b", start_data_info) if res: hasy = True res = re.search(r"\bdx\b", start_data_info) if res: hasdx = True res = re.search(r"\bdy\b", start_data_info) if res: hasdy = True res = re.search(r"\edy\b", start_data_info) if res: hasedy = True res = re.search(r"^#+ Metadata\s*(?:#.*\s+)*", header, re.M) if res: metadata = header[res.end() :].strip() header = header[: res.start()] res = re.search(r"^#+ SrMiseMetadata\s*(?:#.*\s+)*", header, re.M) if res: srmisemetadata = header[res.end() :].strip() header = header[: res.start()] res = re.search(r"^#+ InitialPeaks.*$", header, re.M) if res: initial_peaks = header[res.end() :].strip() header = header[: res.start()] res = re.search(r"^#+ BaselineObject\s*(?:#.*\s+)*", header, re.M) if res: baselineobject = header[res.end() :].strip() header = header[: res.start()] res = re.search(r"^#+ PeakFunctions.*$", header, re.M) if res: peakfunctions = header[res.end() :].strip() header = header[: res.start()] res = re.search(r"^#+ BaselineFunctions.*$", header, re.M) if res: baselinefunctions = header[res.end() :].strip() header = header[: res.start()] # Instantiating baseline functions res = re.split(r"(?m)^#+ BaselineFunction \d+\s*(?:#.*\s+)*", baselinefunctions) for s in res[1:]: safebf.append(BaseFunction.factory(s, safebf)) # Instantiating peak functions res = re.split(r"(?m)^#+ PeakFunction \d+\s*(?:#.*\s+)*", peakfunctions) for s in res[1:]: safepf.append(BaseFunction.factory(s, safepf)) # Instantiating Baseline object if re.match(r"^None$", baselineobject): self.baseline = None elif re.match(r"^\d+$", baselineobject): self.baseline = safebf[int(baselineobject)] else: self.baseline = Baseline.factory(baselineobject, safebf) # Instantiating initial peaks if re.match(r"^None$", initial_peaks): self.initial_peaks = None else: self.initial_peaks = Peaks() res = re.split(r"(?m)^#+ InitialPeak\s*(?:#.*\s+)*", initial_peaks) for s in res[1:]: self.initial_peaks.append(Peak.factory(s, safepf)) # Instantiating srmise metatdata # pf res = re.search(r"^pf=(.*)$", srmisemetadata, re.M) self.pf = eval(res.groups()[0].strip()) if self.pf is not None: self.pf = [safepf[i] for i in self.pf] # cres rx = {"f": r"[-+]?(\d+(\.\d*)?|\d*\.\d+)([eE][-+]?\d+)?"} regexp = r"\bcres *= *(%(f)s)\b" % rx res = re.search(regexp, srmisemetadata, re.I) self.cres = float(res.groups()[0]) # error_method res = re.search(r"^ModelEvaluator=(.*)$", srmisemetadata, re.M) __import__("diffpy.srmise.modelevaluators") module = sys.modules["diffpy.srmise.modelevaluators"] self.error_method = getattr(module, res.groups()[0].strip()) # range res = re.search(r"^Range=(.*)$", srmisemetadata, re.M) self.rng = eval(res.groups()[0].strip()) # Instantiating other metadata self.readmetadata(metadata) # Instantiating start data # read actual data - x, y, dx, dy, plus effective_dy arrays = [] if hasx: self.x = [] arrays.append(self.x) else: self.x = None if hasy: self.y = [] arrays.append(self.y) else: self.y = None if hasdx: self.dx = [] arrays.append(self.dx) else: self.dx = None if hasdy: self.dy = [] arrays.append(self.dy) else: self.dy = None if hasedy: self.effective_dy = [] arrays.append(self.effective_dy) else: self.effective_dy = None # raise SrMiseDataFormatError if something goes wrong try: for line in start_data.split("\n"): split_line = line.split() if len(arrays) != len(split_line): emsg = "Number of value fields does not match that given by '%s'" % start_data_info for a, v in zip(arrays, line.split()): a.append(float(v)) except (ValueError, IndexError) as err: raise SrMiseDataFormatError(str(err)) if hasx: self.x = np.array(self.x) if hasy: self.y = np.array(self.y) if hasdx: self.dx = np.array(self.dx) if hasdy: self.dy = np.array(self.dy) if hasedy: self.effective_dy = np.array(self.effective_dy) # Instantiating results res = re.search(r"^#+ ModelCluster\s*(?:#.*\s+)*", results, re.M) if res: mc = results[res.end() :].strip() results = results[: res.start()] # extraction type res = re.search(r"^extraction_type=(.*)$", results, re.M) if res: self.extraction_type = eval(res.groups()[0].strip()) else: emsg = "Required field 'extraction_type' not found." raise SrMiseDataFormatError(emsg) # extracted if re.match(r"^None$", mc): self.extracted = None else: self.extracted = ModelCluster.factory(mc, pfbaselist=safepf, blfbaselist=safebf)
[docs] def write(self, filename): """Write string representation of PeakExtraction instance to file. Parameters ---------- filename : str The name of the file to write """ bytes = self.writestr() f = open(filename, "w") f.write(bytes) f.close() return
[docs] def writestr(self): """Return string representation of PeakExtraction object. Returns ------- The str representation of PeakExtraction object """ import time from getpass import getuser from diffpy.srmise import __version__ from diffpy.srmise.basefunction import BaseFunction lines = [] # Header lines.extend( [ "History written: " + time.ctime(), "produced by " + getuser(), "diffpy.srmise version %s" % __version__, "##### PDF Peak Extraction", ] ) # Generate list of PeakFunctions and BaselineFunctions # so I can refer to them by index when necessary. allpf = [] allbf = [] if self.pf is not None: allpf.extend(self.pf) if self.initial_peaks is not None: allpf.extend([i.owner() for i in self.initial_peaks]) if self.baseline is not None: if isinstance(self.baseline, BaseFunction): allbf.append(self.baseline) else: # should be a ModelPart allbf.append(self.baseline.owner()) if self.extracted is not None: allpf.extend(self.extracted.peak_funcs) allpf.extend([p.owner() for p in self.extracted.model]) if self.extracted.baseline is not None: allbf.append(self.extracted.baseline.owner()) allpf = list(set(allpf)) allbf = list(set(allbf)) safepf = BaseFunction.safefunctionlist(allpf) safebf = BaseFunction.safefunctionlist(allbf) # Indexed baseline functions lines.append("## BaselineFunctions") for i, bf in enumerate(safebf): lines.append("# BaselineFunction %s" % i) lines.append(bf.writestr(safebf)) # Indexed peak functions lines.append("## PeakFunctions") for i, pf in enumerate(safepf): lines.append("# PeakFunction %s" % i) lines.append(pf.writestr(safepf)) # Baseline lines.append("# BaselineObject") if self.baseline is None: lines.append("None") elif self.baseline in safebf: lines.append("%s" % repr(safebf.index(self.baseline))) else: lines.append(self.baseline.writestr(safebf)) # Initial peaks lines.append("## InitialPeaks") if self.initial_peaks is None: lines.append("None") else: for ip in self.initial_peaks: lines.append("# InitialPeak") lines.append(ip.writestr(safepf)) lines.append("# SrMiseMetadata") # Extractable peak types if self.pf is None: lines.append("pf=None") else: lines.append("pf=%s" % repr([safepf.index(p) for p in self.pf])) # Clustering resolution lines.append("cres=%g" % self.cres) # Model evaluator if self.error_method is None: lines.append("ModelEvaluator=None") else: lines.append("ModelEvaluator=%s" % self.error_method.__name__) # Extraction range lines.append("Range=%s" % repr(self.rng)) # Everything not defined by PeakExtraction lines.append("# Metadata") lines.append(self.writemetadata()) # Raw data used in extraction. lines.append("##### start data") line = ["#L"] numlines = 0 if self.x is not None: line.append("x") numlines = len(self.x) if self.y is not None: line.append("y") numlines = len(self.y) if self.dx is not None: line.append("dx") numlines = len(self.dx) if self.dy is not None: line.append("dy") numlines = len(self.dy) if self.effective_dy is not None: line.append("edy") numlines = len(self.effective_dy) lines.append(" ".join(line)) for i in range(numlines): line = [] if self.x is not None: line.append("%g" % self.x[i]) if self.y is not None: line.append("%g" % self.y[i]) if self.dx is not None: line.append("%g" % self.dx[i]) if self.dy is not None: line.append("%g" % self.dy[i]) if self.effective_dy is not None: line.append("%g" % self.effective_dy[i]) lines.append(" ".join(line)) # Calculated members lines.append("##### Results") lines.append("extraction_type=%s" % repr(self.extraction_type)) lines.append("### ModelCluster") if self.extracted is None: lines.append("None") else: lines.append(self.extracted.writestr(pfbaselist=safepf, blfbaselist=safebf)) datastring = "\n".join(lines) + "\n" return datastring
[docs] def writemetadata(self): """Return string for metadata not defined by srmise class.""" return
[docs] def readmetadata(self): """Return string for metadata not defined by srmise class.""" return
[docs] def writesummary(self): """Return summary of peak extraction results.""" pass
[docs] def getrangeslice(self): """Convert the ranges in terms of x-coordinates to a slice object.""" low_idx = 0 while self.x[low_idx] < max(self.x[0], self.rng[0]): low_idx += 1 hi_idx = len(self.x) while self.x[hi_idx - 1] > min(self.x[-1], self.rng[1]): hi_idx -= 1 return slice(low_idx, hi_idx)
[docs] def estimate_peak(self, x, add=True): """Return new estimated peak near x. Peaks already extracted, if any, are taken into account. If none exist, use those specified by initial_peaks instead. Parameters ---------- x : array-like The oordinate of the point of interest add : bool Automatically add peak to extracted peaks or initial_peaks. Default is True. Returns ------- The Peak object, or None if estimation fails. """ # Make sure all required extraction variables have some value self.defaultvars() if self.extracted is not None: # Determine clusters using existing peaks and baseline in extracted x1 = self.extracted.r_cluster y1 = self.extracted.y_cluster - self.extracted.value() dy = self.extracted.error_cluster else: # Determine clusters using initial_peaks and pre-defined or estimated baseline rangeslice = self.getrangeslice() x1 = self.x[rangeslice] y1 = self.y[rangeslice] - self.baseline.value(x1) - self.initial_peaks.value(x1) dy = self.effective_dy[rangeslice] if x < x1[0] or x > x1[-1]: emsg = "Argument x=%s outside allowed range (%s, %s)." % (x, x1[0], x1[-1]) raise ValueError(emsg) # Object performing clustering on data. Note that DataClusters # provides an iterator that clusters the next point and returns # itself. Thus, dclusters and step (below) refer to the same object. dclusters = DataClusters(x1, y1, self.cres) # Cluster with baseline removed dclusters.makeclusters() cidx = dclusters.find_nearest_cluster2(x)[0] cslice = dclusters.cut(cidx) x1 = x1[cslice] y1 = y1[cslice] dy = dy[cslice] mcluster = ModelCluster(None, None, x1, y1, dy, None, self.error_method, self.pf) mcluster.fit() if len(mcluster.model) > 0: if add: logger.info("Adding peak: %s" % mcluster.model[0]) self.add_peaks(mcluster.model) else: logger.info("Found peak: %s" % mcluster.model[0]) return mcluster.model[0] else: logger.info("No peaks found.") return None
[docs] def add_peaks(self, peaks): """Add peaks to extracted peaks, or initial_peaks if no extracted peaks exist. Parameters ---------- peaks: Peaks object The peaks instance """ if self.extracted is not None: self.extracted.replacepeaks(peaks) else: if self.initial_peaks is None: self.setvars("initial_peaks") self.initial_peaks.extend(peaks) self.initial_peaks.sort(key="position")
[docs] def extract_single(self, recursion_depth=1): """Find ModelCluster with peaks extracted from data. Return ModelCovariance instance at top level. Every extracted peak is one of the peak functions supplied. All comparisons of different peak models are performed with the class specified by error_method. Parameters recursion_depth: (1) Tracks recursion with extract_single.""" self.clearcalc() tracer = srmiselog.tracer tracer.pushc() tracer.pushr() # Make sure all required extraction variables have some value self.defaultvars() bl = self.baseline # Copy initial_peaks # While it would be nice to integrate them into extracted model naturally # as it progresses, this is fraught with difficulties. Thus, they will # only be added back in before the final prune. ip = self.initial_peaks.copy() rangeslice = self.getrangeslice() x = self.x[rangeslice] y = self.y[rangeslice] - bl.value(x) - ip.value(x) dy = self.effective_dy[rangeslice] # Object performing clustering on data. Note that DataClusters # provides an iterator that clusters the next point and returns # itself. Thus, dclusters and step (below) refer to the same object. dclusters = DataClusters(x, y, self.cres) # Cluster with baseline removed # The data for model clusters includes the baseline y = self.y[rangeslice] - ip.value(x) # List of ModelClusters containing extracted peaks. mclusters = [ModelCluster(None, bl, x, y, dy, dclusters.cut(0), self.error_method, self.pf)] # The minimum number of points required to make a valid fit, as # determined by the peak functions and error method used. This is a # conservative estimate. minpoints = max([self.error_method().minpoints(p.npars) for p in self.pf]) stepcounter = 0 # ######################### # Main extraction loop ### for step in dclusters: stepcounter += 1 msg = "\n\n------ Recursion: %s Step: %s Cluster: %s %s ------" logger.debug( msg, recursion_depth, stepcounter, step.lastcluster_idx, step.clusters[step.lastcluster_idx], ) # Update mclusters if len(step.clusters) > len(mclusters): # Add a new cluster mclusters.insert( step.lastcluster_idx, ModelCluster( None, bl, x, y, dy, step.cut(step.lastcluster_idx), self.error_method, self.pf, ), ) else: # Update an existing cluster mclusters[step.lastcluster_idx].change_slice(step.cut(step.lastcluster_idx)) # Find newly adjacent clusters adjacent = step.find_adjacent_clusters().ravel() # Various assertions in case terrible things are afoot. # These could save some gray hairs if they are needed. # ------ # dclusters and mclusters should have consistent lengths assert len(step.clusters) == len(mclusters) # Clusters are always combined after becoming adjacent, so at most # three clusters can become adjacent at any given step. assert len(adjacent) <= 3 # Update cluster fits ### # 1. Refit clusters adjacent to at least one other cluster. for a in adjacent: mclusters[a].fit(justify=True) # 2. If necessary, update the fit of the cluster which has just # had one or more points added. This occurs if the function # has not been fit before but now contains enough data points # to make a good estimate or if the size of the cluster has # increased enough (e.g. doubled in size) since it was last # fit. mclusters[step.lastcluster_idx].contingent_fit(minpoints, 2.0) # 3. Boundary recursion. If a cluster fills to the boundary of # the data it should be recursively fit as though it were # combining with an empty cluster at the boundary. This should # reveal hidden peaks that might otherwise be improperly fit # with just a single peak function. # # Note: If I later implement intra-cluster fitting, this # section may become redundant...or the basis for doing it # properly. Two if statements are required, in case the fit # results in all peaks blowing up and being removed. # # Note: The operation here is very similar to combining # clusters and recursing. Attempt to be be consistent with # that section. The primary difference is no need to create an # enlarged cluster ("new_cluster") or an intermediate cluster # ("adj_cluster"). if step.lastpoint_idx == 0 or step.lastpoint_idx == len(step.x) - 1: logger.debug("Boundary full: %s", step.lastpoint_idx) full_cluster = ModelCluster(mclusters[step.lastcluster_idx]) full_cluster.fit(True) # Estimate coordinate where clusters combine. border_x = x[step.lastcluster_idx] border_y = y[step.lastcluster_idx] # Determine neighborhood appropriate for fitting (no larger than combined clusters) if len(full_cluster.model) > 0: peak_pos = np.array([p["position"] for p in full_cluster.model]) pivot = peak_pos.searchsorted(border_x) else: peak_pos = np.array([]) pivot = 0 # near_peaks: array containing the indices of two nearest peaks on either side of border_x # other_peaks: all the other peaks in full_cluster # left_data, right_data: indices defining the extent of the "interpeak range" for x, etc. near_peaks = np.array([], dtype=np.int) # interpeak range goes from peak to peak of next nearest peaks, although their contributions # to the data are still removed. if pivot == 0: # No peaks left of border_x! left_data = full_cluster.slice.indices(len(x))[0] elif pivot == 1: # One peak left left_data = full_cluster.slice.indices(len(x))[0] near_peaks = np.append(near_peaks, pivot - 1) else: # left_data -> one more peak to the left left_data = max(0, x.searchsorted(peak_pos[pivot - 2]) - 1) near_peaks = np.append(near_peaks, pivot - 1) if pivot == len(peak_pos): # No peaks right of border_x! right_data = full_cluster.slice.indices(len(x))[1] - 1 elif pivot == len(peak_pos) - 1: # One peak right right_data = full_cluster.slice.indices(len(x))[1] - 1 near_peaks = np.append(near_peaks, pivot) else: # right_data -> one more peak to the right right_data = min(len(x), x.searchsorted(peak_pos[pivot + 1]) + 1) near_peaks = np.append(near_peaks, pivot) other_peaks = np.concatenate([np.arange(0, pivot - 1), np.arange(pivot + 1, len(peak_pos))]) # Go from indices to lists of peaks. near_peaks = Peaks([full_cluster.model[i] for i in near_peaks]) other_peaks = Peaks([full_cluster.model[i] for i in other_peaks]) # Remove contribution of peaks outside neighborhood # Define range of fitting/recursion to the interpeak range # The adjusted error is passed unchanged. This may introduce # a few more peaks than is justified, but they can be pruned # with the correct statistics at the top level of recursion. adj_slice = slice(left_data, right_data + 1) adj_x = x[adj_slice] adj_y = y[adj_slice] - other_peaks.value(adj_x) adj_error = dy[adj_slice] adj_cluster = ModelCluster( near_peaks, bl, adj_x, adj_y, adj_error, slice(len(adj_x)), self.error_method, self.pf, ) # Recursively cluster/fit the residual rec_r = adj_x rec_y = adj_y - near_peaks.value(rec_r) rec_error = adj_error # Quick check to see if there is anything to find min_npars = min([p.npars for p in self.pf]) checkrec = ModelCluster( None, None, rec_r, rec_y, rec_error, None, self.error_method, self.pf, ) recurse = len(near_peaks) > 0 and checkrec.quality().growth_justified(checkrec, min_npars) if recurse and recursion_depth < 3: logger.info( "\n*********STARTING RECURSION level %s (full boundary)************" % (recursion_depth + 1) ) rec_search = PeakExtraction() rec_search.setdata(rec_r, rec_y, None, rec_error) rec_search.setvars( quiet=True, baseline=bl, cres=self.cres, pf=self.pf, error_method=self.error_method, ) rec_search.extract_single(recursion_depth + 1) rec = rec_search.extracted logger.info( "*********ENDING RECURSION level %s (full boundary) ************\n" % (recursion_depth + 1) ) # Incorporate best peaks from recursive search. adj_cluster.augment(rec) # Select which model to use full_cluster.model = other_peaks full_cluster.replacepeaks(adj_cluster.model) full_cluster.fit(True) msg = [ "---Result of full boundary---", "Original cluster:", "%s", "Final cluster:", "%s", "---End of combining clusters---", ] logger.debug("\n".join(msg), mclusters[step.lastcluster_idx], full_cluster) mclusters[step.lastcluster_idx] = full_cluster # End update cluster fits ### # Combine adjacent clusters ### # Iterate in reverse order to preserve earlier indices for idx in adjacent[-1:0:-1]: msg = ["Current model"] msg.extend(["%s" for m in mclusters]) logger.debug("\n".join(msg), *[m.model for m in mclusters]) cleft = step.clusters[idx - 1] cright = step.clusters[idx] new_cluster = ModelCluster.join_adjacent(mclusters[idx - 1], mclusters[idx]) # Estimate coordinate where clusters combine. border_x = 0.5 * (x[cleft[1]] + x[cright[0]]) border_y = 0.5 * (y[cleft[1]] + y[cright[0]]) # Determine neighborhood appropriate for fitting (no larger than combined clusters) if len(new_cluster.model) > 0: peak_pos = np.array([p["position"] for p in new_cluster.model]) pivot = peak_pos.searchsorted(border_x) else: peak_pos = np.array([]) pivot = 0 # near_peaks: array containing the indices of two nearest peaks on either side of border_x # other_peaks: all the other peaks in new_cluster # left_data, right_data: indices defining the extent of the "interpeak range" for x, etc. near_peaks = np.array([], dtype=np.int) # interpeak range goes from peak to peak of next nearest peaks, although their contributions # to the data are still removed. if pivot == 0: # No peaks left of border_x! left_data = new_cluster.slice.indices(len(x))[0] elif pivot == 1: # One peak left left_data = new_cluster.slice.indices(len(x))[0] near_peaks = np.append(near_peaks, pivot - 1) else: # left_data -> one more peak to the left left_data = max(0, x.searchsorted(peak_pos[pivot - 2]) - 1) near_peaks = np.append(near_peaks, pivot - 1) if pivot == len(peak_pos): # No peaks right of border_x! right_data = new_cluster.slice.indices(len(x))[1] - 1 elif pivot == len(peak_pos) - 1: # One peak right right_data = new_cluster.slice.indices(len(x))[1] - 1 near_peaks = np.append(near_peaks, pivot) else: # right_data -> one more peak to the right right_data = min(len(x), x.searchsorted(peak_pos[pivot + 1]) + 1) near_peaks = np.append(near_peaks, pivot) other_peaks = np.concatenate([np.arange(0, pivot - 1), np.arange(pivot + 1, len(peak_pos))]) # Go from indices to lists of peaks. near_peaks = Peaks([new_cluster.model[i] for i in near_peaks]) other_peaks = Peaks([new_cluster.model[i] for i in other_peaks]) # Remove contribution of peaks outside neighborhood # Define range of fitting/recursion to the interpeak range # The adjusted error is passed unchanged. This may introduce # a few more peaks than is justified, but they can be pruned # with the correct statistics at the top level of recursion. adj_slice = slice(left_data, right_data + 1) adj_x = x[adj_slice] adj_y = y[adj_slice] - other_peaks.value(adj_x) adj_error = dy[adj_slice] # # Perform recursion on a version that is scaled at the # border, as well as on that is simply fit beforehand. In # many cases these lead to nearly identical results, but # occasionally one works much better than the other. adj_cluster1 = ModelCluster( near_peaks.copy(), bl, adj_x, adj_y, adj_error, slice(len(adj_x)), self.error_method, self.pf, ) adj_cluster2 = ModelCluster( near_peaks.copy(), bl, adj_x, adj_y, adj_error, slice(len(adj_x)), self.error_method, self.pf, ) # Adjust cluster at border if there is at least one peak on # either side. if len(near_peaks) == 2: adj_cluster1.reduce_to(border_x, border_y) # Recursively cluster/fit the residual rec_r1 = adj_x # rec_y1 = adj_y - near_peaks.value(rec_r1) rec_y1 = adj_y - adj_cluster1.model.value(rec_r1) rec_error1 = adj_error # Quick check to see if there is anything to find min_npars = min([p.npars for p in self.pf]) checkrec = ModelCluster( None, None, rec_r1, rec_y1, rec_error1, None, self.error_method, self.pf, ) recurse1 = checkrec.quality().growth_justified(checkrec, min_npars) if recurse1 and recursion_depth < 3: logger.info( "\n*********STARTING RECURSION level %s (reduce at border)************" % (recursion_depth + 1) ) rec_search1 = PeakExtraction() rec_search1.setdata(rec_r1, rec_y1, None, rec_error1) rec_search1.setvars( quiet=True, baseline=bl, cres=self.cres, pf=self.pf, error_method=self.error_method, ) rec_search1.extract_single(recursion_depth + 1) rec1 = rec_search1.extracted logger.info( "*********ENDING RECURSION level %s (reduce at border) ************\n" % (recursion_depth + 1) ) # Incorporate best peaks from recursive search. adj_cluster1.augment(rec1) # Fit cluster model adj_cluster2.fit(True) # Recursively cluster/fit the residual rec_r2 = adj_x # rec_y2 = adj_y - near_peaks.value(rec_r2) rec_y2 = adj_y - adj_cluster2.model.value(rec_r2) rec_error2 = adj_error # Quick check to see if there is anything to find min_npars = min([p.npars for p in self.pf]) checkrec = ModelCluster( None, None, rec_r2, rec_y2, rec_error2, None, self.error_method, self.pf, ) recurse2 = len(near_peaks) > 0 and checkrec.quality().growth_justified(checkrec, min_npars) if recurse2 and recursion_depth < 3: logger.info( "\n*********STARTING RECURSION level %s (prefit)************" % (recursion_depth + 1) ) rec_search2 = PeakExtraction() rec_search2.setdata(rec_r2, rec_y2, None, rec_error2) rec_search2.setvars( quiet=True, baseline=bl, cres=self.cres, pf=self.pf, error_method=self.error_method, ) rec_search2.extract_single(recursion_depth + 1) rec2 = rec_search2.extracted logger.info( "*********ENDING RECURSION level %s (prefit) ************\n" % (recursion_depth + 1) ) # Incorporate best peaks from recursive search. adj_cluster2.augment(rec2) # Select which model to use new_cluster.model = other_peaks rej_cluster = ModelCluster(new_cluster) q1 = adj_cluster1.quality(self.error_method) q2 = adj_cluster2.quality(self.error_method) if q1 > q2: new_cluster.replacepeaks(adj_cluster1.model) rej_cluster.replacepeaks(adj_cluster2.model) else: new_cluster.replacepeaks(adj_cluster2.model) rej_cluster.replacepeaks(adj_cluster1.model) new_cluster.fit(True) msg = [ "---Result of combining clusters---", "First cluster:", "%s", "Second cluster:", "%s", "Resulting cluster:", "%s", "---End of combining clusters---", ] logger.debug("\n".join(msg), mclusters[idx - 1], mclusters[idx], new_cluster) mclusters[idx - 1] = new_cluster del mclusters[idx] # End combine adjacent clusters loop ### # Finally, combine clusters in dclusters if len(adjacent) > 0: step.combine_clusters([adjacent]) tracer.emit(*mclusters) # End main extraction loop ### # ############################# # Put initial peaks back in mclusters[0].addexternalpeaks(ip) # Remove unnecessary peaks mclusters[0].prune() # At the top level of recursion the baseline should be fit as well. # Other than simply removing the baseline for recursive calls (viable # but annoying for display purposes) this is the simplest solution to # only fitting the baseline at the very end. # Also calculates covariance at this level. if recursion_depth == 1: cov = ModelCovariance() mclusters[0].fit(fitbaseline=True, cov=cov) # Update calculated instance variables self.extraction_type = "extract_single" self.extracted = mclusters[0] tracer.popc() tracer.popr() if recursion_depth == 1: return cov
[docs] def fit_single(self): """Fit peaks in initial_peaks with baseline. Return ModelCovariance instance summarizing results.""" self.clearcalc() # Make sure all required extraction variables have some value self.defaultvars() # Define grids rngslice = self.getrangeslice() x = self.x[rngslice] y = self.y[rngslice] dy = self.effective_dy[rngslice] # Set up ModelCluster ext = ModelCluster( self.initial_peaks, self.baseline, x, y, dy, None, self.error_method, self.pf, ) # Fit model with baseline and calculate covariance matrix cov = ModelCovariance() ext.fit(fitbaseline=True, estimate=False, cov=cov, cov_format="default_output") # Update calculated instance variables self.extraction_type = "fit_single" self.extracted = ext return cov
# end PeakExtraction class # simple test code if __name__ == "__main__": from numpy.random import randn from diffpy.srmise.modelevaluators.aicc import AICc from diffpy.srmise.peaks.gaussianoverr import GaussianOverR srmiselog.setlevel("info") srmiselog.liveplotting(False) pf = GaussianOverR(0.7) res = 0.01 pars = [[3, 0.2, 10], [3.5, 0.2, 10]] ideal_peaks = Peaks([pf.actualize(p, "pwa") for p in pars]) r = np.arange(2, 4, res) y = ideal_peaks.value(r) + randn(len(r)) err = np.ones(len(r)) evaluator = AICc() te = PeakExtraction() te.setdata(r, y, None, err) te.setvars(rng=[1.51, 10.0], pf=[pf], cres=0.1, effective_dy=1.5 * err) te.extract_single() print("--- Actual Peak parameters ---") print(ideal_peaks) print("\n--- After extraction ---") print(te) te.plot() input()